Data Analytics for Noise Reduction in Optical Metrology of Reflective Planar Surfaces

Author:

Berry Cody,Tsuzuki Marcos S. G.ORCID,Barari AhmadORCID

Abstract

On-line data collection from the manufactured parts is an essential element in Industry 4.0 to monitor the production’s health, which required strong data analytics. The optical metrology-based inspection of highly reflective parts in a production line, such as parts with metallic surfaces, is a difficult challenge. As many on-line inspection paradigms require the use of optical sensors, this reflectivity can lead to large amounts of noise, rendering the scan inaccurate. This paper discusses a method for noise reduction and removal in datapoints resulting from scanning the reflective planar surfaces. Utilizing a global statistic-based iterative approach, noise is gradually removed from the dataset at increasing percentages. The change in the standard deviation of point-plane distances is examined, and an optimal amount of noisy data is removed to reduce uncertainty in representing the workpiece. The developed algorithm provides a fast and efficient method for noise reduction in optical coordinate metrology and scanning.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3