Multi-Objective Design Optimization of Flexible Manufacturing Systems Using Design of Simulation Experiments: A Comparative Study

Author:

Jerbi AbdessalemORCID,Hachicha WafikORCID,Aljuaid Awad M.ORCID,Masmoudi Neila Khabou,Masmoudi Faouzi

Abstract

One of the basic components of Industry 4.0 is the design of a flexible manufacturing system (FMS), which involves the choice of parameters to optimize its performance. Discrete event simulation (DES) models allow the user to understand the operation of dynamic and stochastic system performance and to support FMS diagnostics and design. In combination with DES models, optimization methods are often used to search for the optimal designs, which, above all, involve more than one objective function to be optimized simultaneously. These methods are called the multi-objective simulation–optimization (MOSO) method. Numerous MOSO methods have been developed in the literature, which spawned many proposed MOSO methods classifications. However, the performance of these methods is not guaranteed because there is an absence of comparative studies. Moreover, previous classifications have been focused on general MOSO methods and rarely related to the specific area of manufacturing design. For this reason, a new conceptual classification of MOSO used in FMS design is proposed. After that, four MOSO methods are selected, according to this classification, and compared through a detailed case study related to the FMS design problem. All of these methods studied are based on Design of Experiments (DoE). Two of them are metamodel-based approaches that integrate Goal Programming (GP) and Desirability Function (DF), respectively. The other two methods are not metamodel-based approaches, which integrate Gray Relational Analysis (GRA) and the VIKOR method, respectively. The comparative results show that the GP and VIKOR methods can result in better optimization than DF and GRA methods. Thus, the use of the simulation metamodel cannot prove its superiority in all situations.

Funder

Taif University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3