Identification of Tool Wear Based on Infographics and a Double-Attention Network

Author:

Ni Jing1ORCID,Liu Xuansong1ORCID,Meng Zhen1ORCID,Cui Yiming1

Affiliation:

1. School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China

Abstract

Tool wear is a crucial factor in machining as it directly impacts surface quality and indirectly decreases machining efficiency, which leads to significant economic losses. Hence, monitoring tool wear state is of the utmost importance for achieving high performance and efficient machining. Although monitoring tool wear state using a single sensor has been validated in laboratory settings, it has certain drawbacks such as limited feature information acquisition and inability to learn important features adaptively. These limitations pose challenges to quickly extending the monitoring function of tool wear state of the machine tools. To solve these problems, this paper proposes a double-attention deep learning network based on vibroacoustic signal fusion feature infographics. The first solution is the construction of novel infographics using tool-intrinsic characteristics and multi-domain fusion features of multi-sensor inputs, which includes correlation analysis, principal component analysis, and feature fusion. The second solution is to build a novel deep network with a double-attention module and a spatial pyramid pooling module which can accurately and quickly identify tool wear state by successfully extracting critical spatial data from the infographics at various scales. The validity of the network is examined through an interpretability analysis based on the class activation graph. In terms of the tool wear status recognition task, the F1 score of the double-attention model based on an information graph is 11.61% higher than Resnet18, and peak recognition accuracy reaches 97.98%.

Funder

Funding of National Natural Science of Foundation of China

Natural Science of Foundation of Zhejiang Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3