An Improved Backstepping Controller with an LESO and TDs for Robust Underwater 3D Trajectory Tracking of a Turtle-Inspired Amphibious Spherical Robot

Author:

Hou XihuanORCID,Li Zan,Guo Shuxiang,Shi LiweiORCID,Xing HuimingORCID,Yin He

Abstract

In this paper, a double closed-loop backstepping controller is designed for 3D trajectory tracking of a turtle-inspired amphibious spherical robot suffering from problems that include model uncertainties, environmental disturbances, and unmeasured velocity. The proposed controller scheme tackles three primary challenges: the differentiation explosion of the traditional backstepping method, unmeasured velocity, and the consideration of lumped disturbances. Beginning with an outer-loop backstepping controller, a virtual feedback variable is constructed to simplify the design of the backstepping controller. Meanwhile, to avoid the problem of differentiation explosion, tracking differentiators (TDs) are utilized to estimate the differentiation of the desired velocity in an inner-loop backstepping controller. Moreover, there are some uncertainty disturbances in the task of tracking the trajectory of a turtle-inspired amphibious spherical robot (TASR), such as the parameters of the hydrodynamic model and environmental disturbances. A linear extended state observer (LESO) is designed to estimate and compensate for the lumped disturbances. Furthermore, as the velocity states of the TASR are unmeasured, the LESO is also utilized to estimate the velocity states in surge, yaw, and heave degrees. Therefore, the TASR only needs to supply its position and orientation information for the trajectory tracking task. Note that this paper details both the design process of the proposed controller and a rigorous theoretical analysis. In addition, numerical simulations are conducted, and the results demonstrate the feasibility and superiority of the proposed method.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3