Author:
Denkena Berend,Bergmann Benjamin,Stiehl Tobias H.
Abstract
Process and tool condition monitoring systems are a prerequisite for autonomous production. One approach to monitoring individual parts without complex cutting simulations is the transfer of knowledge among similar monitoring scenarios. This paper introduces a novel monitoring method which transfers monitoring limits for process signals between different machine tools. The method calculates monitoring limits statistically from cutting processes carried out on one or more similar machines. The monitoring algorithm aims to detect general process anomalies online. Experiments comprise face-turning operations at five different lathes, four of which were of the same model. Results include the successful transfer of monitoring limits between machines of the same model for the detection of material anomalies. In comparison to an approach based on dynamic time warping (DTW) and density-based spatial clustering of applications with noise (DBSCAN), the new method showed fewer false alarms and higher detection rates. However, for the transfer between different models of machines, the successful application of the new method is limited. This is predominantly due to limitations of the employed process component isolation and differences between machine models in terms of signal properties as well as execution speed.
Funder
Federal Ministry for Economic Affairs and Energy
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献