Simulation and Validation of Cavitating Flow in a Torque Converter with Scale-Resolving Methods

Author:

Zhang Jiahua1ORCID,Yan Qingdong12,Liu Cheng13ORCID,Guo Meng14ORCID,Wei Wei13ORCID

Affiliation:

1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China

2. Advanced Technology Research Institute, Beijing Institute of Technology, Jinan 250307, China

3. Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401122, China

4. Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314000, China

Abstract

The purpose of this paper is to study the mechanism and improve the prediction accuracy of transient torque converter cavitation flow by the application of scale-resolving simulation (SRS) methods with particular focus on cavitation vortex flow. Firstly, the numerical analysis of the entire internal flow field of the torque converter was carried out using different turbulence models, and the prediction accuracy of the hydraulic characteristics of the adopted models was analyzed and validated via test data. Secondly, the cavitation and turbulence behavior in the internal flow field were analyzed, and the blade surface pressure according to different turbulence models was compared and validated through test data. Finally, the transient cavitation characteristics of the flow field were studied based on the stress-blended eddy simulation (SBES) model. The prediction accuracy of the cavitation flow field simulation of the torque converter is significantly improved using the SRS model. The maximum error of capacity constant, torque ratio and efficiency are reduced to 3.1%, 2.3%, and 1.3% at stall, respectively. The stator is more prone to cavitation than pump and turbine. The SBES model has the highest prediction accuracy in multiple measurement points, and the maximum deviation can reach 13.32% under stall. Attached cavitation bubbles and periodic shedding cavitation can be found in the stator, and the evolution period is about 0.0036 s, i.e., 279 Hz. The prediction accuracy of different models was compared and analyzed, which has important guiding significance for the high-precision prediction and analysis of fluid machinery.

Funder

National Natural Science Foundation of China

Beijing Institute of Technology Research Fund Program for young Scholars

Vehicular Transmission Key Laboratory Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3