Design Approach and Mechanism Analysis for Cavitation-Tolerant Torque Converter Blades

Author:

Ran ZilinORCID,Ma Wenxing,Liu Chunbao

Abstract

As the development of hydrodynamic torque converters (HTCs) points toward increasing the pump input power and pump rotation speed, the negative effects of cavitation are worsening. Most studies focus on suppressing fluid machinery cavitation to attenuate the negative effects of cavitation, such as noise, vibration, and blade damage. Therefore, we proposed two stator cavitation suppression slotting methods to suppress stator cavitation in HTCs: (1) slotting both sides of the pressure and suction sides and (2) slotting one side of the suction side. The key design parameters are analyzed, including the slot width and slot position of the stator blade. Findings show that a wider slot enlarges the mass flow rate ventilation through the slot, thus reducing the cavitation risk but decreasing the hydrodynamic performance. The most effective slot position for the second proposed method (slotting one side of the suction side) is between S0.15 (stator suction side dimensionless distance 0.15 location) and S0.6 (stator blade suction side); here, the stator cavitation can be suppressed completely. The capacity factor (Tbg) and torque ratio (K) are decreased by 6.81% and 3.23%, respectively, under the stalling speed ratio, whereas the stator cavitation almost completely disappears. Therefore, the new method of slotting one side of the stator suction side completely suppresses the stator cavitation and significantly shortens the cavitation duration. The new method of slotting one side of the blade suction side can serve as a reference for turbomachinery design.

Funder

the Natural Science Foundation of Jilin Province “Multidisciplinary Collaborative Optimization Design Theory of Vehicle Hydraulic Retarder with Cavitation Effect”

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3