Autonomous Vehicle Decision and Control through Reinforcement Learning with Traffic Flow Randomization

Author:

Lin Yuan1ORCID,Xie Antai1ORCID,Liu Xiao1

Affiliation:

1. Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou 510641, China

Abstract

Most of the current studies on autonomous vehicle decision-making and control based on reinforcement learning are conducted in simulated environments. The training and testing of these studies are carried out under the condition of rule-based microscopic traffic flow, with little consideration regarding migrating them to real or near-real environments. This may lead to performance degradation when the trained model is tested in more realistic traffic scenes. In this study, we propose a method to randomize the driving behavior of surrounding vehicles by randomizing certain parameters of the car-following and lane-changing models of rule-based microscopic traffic flow. We trained policies with deep reinforcement learning algorithms under the domain-randomized rule-based microscopic traffic flow in freeway and merging scenes and then tested them separately in rule-based and high-fidelity microscopic traffic flows. The results indicate that the policies trained under domain-randomized traffic flow have significantly better success rates and episodic rewards compared to those trained under non-randomized traffic flow.

Funder

Guangzhou Basic and Applied Basic Research Program

South China University of Technology faculty start-up fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3