Author:
Wang Youming,Cao Gongqing,Han Jiali
Abstract
As scalar neurons of traditional neural networks promote dimension reduction caused by pooling, it is a difficult task to extract the high-dimensional spatial features and long-term correlation of pure signals from the noisy vibration signal. To address the above issues, a vibration signal denoising method based on the combination of a dilated self-attention capsule network and bidirectional long short memory network (DACapsNet–BiLSTM) is proposed to extract high-dimensional spatial features and learn long-term correlations between two adjacent time steps. An improved self-attention module with spatial feature extraction ability was constructed based on the random distribution of noise, which is embedded into the capsule network for the extracted spatial features and denoising. The dilated convolution is integrated into the improved capsule network to expand the receptive field to obtain the spatial features of the vibration signal. The output of the capsule network was used as the input of the bidirectional long-term and short-term memory network to obtain the timing characteristics of the vibration signal. Numerical experiments demonstrated that DACapsNet–BiLSTM performs better than other signal denoising methods, in terms of signal-to-noise ratio, mean square error, and mean absolute error metrics.
Funder
National Natural Science Foundation of China
the Key Research and Development Program of Shaanxi Province of China
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献