The Optimal Selection of Mother Wavelet Function and Decomposition Level for Denoising of DCG Signal

Author:

Jang Young InORCID,Sim Jae Young,Yang Jong-RyulORCID,Kwon Nam Kyu

Abstract

The aim of this paper is to find the optimal mother wavelet function and wavelet decomposition level when denoising the Doppler cardiogram (DCG), the heart signal obtained by the Doppler radar sensor system. To select the best suited mother wavelet function and wavelet decomposition level, this paper presents the quantitative analysis results. Both the optimal mother wavelet and decomposition level are selected by evaluating signal-to-noise-ratio (SNR) efficiency of the denoised signals obtained by using the wavelet thresholding method. A total of 115 potential functions from six wavelet families were examined for the selection of the optimal mother wavelet function and 10 levels (1 to 10) were evaluated for the choice of the best decomposition level. According to the experimental results, the most efficient selections of the mother wavelet function are “db9” and “sym9” from Daubechies and Symlets families, and the most suitable decomposition level for the used signal is seven. As the evaluation criterion in this study rates the efficiency of the denoising process, it was found that a mother wavelet function longer than 22 is excessive. The experiment also revealed that the decomposition level can be predictable based on the frequency features of the DCG signal. The proposed selection of the mother wavelet function and the decomposition level could reduce noise effectively so as to improve the quality of the DCG signal in information field.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Radar-Based Invisible Biometric Authentication;Information;2024-01-12

2. An efficient wavelet thresholding strategy and robust shrinkage approach for de‐noising ECG signal;International Journal of Imaging Systems and Technology;2023-12-28

3. Random Body Movement Interference Mitigation in Radar Breath Detection Based on L1 Norm;IEEE Sensors Letters;2023-12

4. A Denoising Method of Partial Discharge Signals Employing Wavelet Kernel-Aided Deep Learning Framework;2023 IEEE 3rd Applied Signal Processing Conference (ASPCON);2023-11-24

5. Earthquake electromagnetic precursor anomaly detection method based on empirical mode decomposition;3rd International Conference on Applied Mathematics, Modelling, and Intelligent Computing (CAMMIC 2023);2023-07-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3