Vision-Based Robotic Object Grasping—A Deep Reinforcement Learning Approach

Author:

Chen Ya-Ling1,Cai Yan-Rou1,Cheng Ming-Yang1

Affiliation:

1. Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan

Abstract

This paper focuses on developing a robotic object grasping approach that possesses the ability of self-learning, is suitable for small-volume large variety production, and has a high success rate in object grasping/pick-and-place tasks. The proposed approach consists of a computer vision-based object detection algorithm and a deep reinforcement learning algorithm with self-learning capability. In particular, the You Only Look Once (YOLO) algorithm is employed to detect and classify all objects of interest within the field of view of a camera. Based on the detection/localization and classification results provided by YOLO, the Soft Actor-Critic deep reinforcement learning algorithm is employed to provide a desired grasp pose for the robot manipulator (i.e., learning agent) to perform object grasping. In order to speed up the training process and reduce the cost of training data collection, this paper employs the Sim-to-Real technique so as to reduce the likelihood of damaging the robot manipulator due to improper actions during the training process. The V-REP platform is used to construct a simulation environment for training the deep reinforcement learning neural network. Several experiments have been conducted and experimental results indicate that the 6-DOF industrial manipulator successfully performs object grasping with the proposed approach, even for the case of previously unseen objects.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3