Abstract
For a 2UPR-RPU over-constrained parallel manipulator, some geometric errors result in internal forces and deformations, which limit the improvement of the pose accuracy of the moving platform and shorten the service life of the manipulator. Analysis of these geometric errors is important for restricting them. In this study, an evaluation model is established to analyse the influence of geometric errors on the limbs’ comprehensive deformations for this manipulator. Firstly, the nominal inverse and actual forward kinematics are analysed according to the vector theory and the local product of the exponential formula. Secondly, the evaluation model of the limbs’ comprehensive deformations is established based on kinematics. Thirdly, 41 geometric errors causing internal forces and deformations are identified and the results are verified through simulations based on the evaluation model. Next, two global sensitivity indices are proposed and a sensitivity analysis is conducted using the Monte Carlo method throughout the reachable workspace of the manipulator. The results of the sensitivity analysis indicate that 10 geometric errors have no effects on the average angular comprehensive deformation and that the identified geometric errors have greater effects on the average linear comprehensive deformation. Therefore, the distribution of the global sensitivity index of the average linear comprehensive deformation is more meaningful for accuracy synthesis. Finally, simulations are performed to verify the results of sensitivity analysis.
Funder
National Natural Science Foundation of China
Open Fund of State Key Laboratory of Robotics and System
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献