A Novel Sliding Mode Momentum Observer for Collaborative Robot Collision Detection

Author:

Long ShikeORCID,Dang Xuanju,Sun Shanlin,Wang YongjunORCID,Gui MingzhenORCID

Abstract

Safety during physical human–robot interaction is the most basic requirement for robots. Collision detection without additional sensors is an economically feasible way to ensure it. In contrast, current collision detection approaches have an unavoidable trade-off between sensitivity to collisions, signal smoothness, and immunity to measurement noise. In this paper, we present a novel sliding mode momentum observer (NSOMO) for detecting collisions between robots and humans, including dynamic and quasistatic collisions. The collision detection method starts with a dynamic model of the robot and derives a generalized momentum-based state equation. Then a new reaching law is devised, based on which NSOMO is constructed by fusing momentum, achieving higher bandwidth and noise immunity of observation. Finally, a time-varying dynamic threshold (TVDT) model is designed to distinguish between collision signals and the estimated lumped disturbance. Its coefficients are obtained through offline data recognition. The TVDT with NSOMO enables fast and reliable collision detection and allows collision position assessment. Simulation experiments and hardware tests of the 7-DOF collaborative robot are implemented to illustrate this proposed method’s effectiveness.

Funder

National Natural Science Foundation of China

Fundamental Ability Enhancement Project for 548 Young and Middle-aged University Teachers in Guangxi Province

Key Research and Development Program of Guangxi

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3