Dynamic Characteristic Analysis and Structural Optimization Design of the Large Mining Headframe

Author:

Liu YueORCID,Huang Min,An Qi,Bai LongORCID,Shang DeyongORCID

Abstract

A large headframe is the core structure of a mine hoisting system. In the traditional design, only the static analysis under load is considered, resulting in the resonance phenomenon of the large headframe in later applications. In order to restrain the resonance phenomenon, a novel method for dynamic characteristic analysis and structural optimization design of a large headframe is proposed. First, the eigenfrequencies and vibration modes of the large headframe were obtained through modal analysis. The results showed that the numerical values of the multi-order eigenfrequencies of the system are relatively close. When subjected to alternating loads of similar frequencies, a large headframe is prone to the resonance phenomenon. Second, the steady-state vibration response of the large headframe was obtained through harmonic response analysis. The results showed that when the frequency of the alternating load is close to the first-order eigenfrequency, the vibration amplitude increases. Meanwhile, the fourth-order and the fifth-order eigenfrequencies are very close. When subjected to alternating loads of similar frequencies, the fourth-order and the fifth-order vibration modes of the headframe will be excited simultaneously. At this time, the headframe will have a strong resonance, which may cause structural damage and other problems. Finally, based on the above analysis, nine different structural optimization schemes are proposed in this paper. Through modal analysis and harmonic response analysis, the nine schemes were compared and analyzed, and the optimal scheme was eventually determined as scheme 9. The method proposed in this paper provides a new concept for the structural optimization design of a large mining headframe, and it has great significance for restraining the resonance phenomenon and ensuring the safety of mining operations.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference31 articles.

1. Fault diagnosis of head sheaves based on vibration measurement and data mining method

2. Seismic rocking effects on a mine tower under induced and natural earthquakes

3. Hydrostatic leveling system for monitoring the headframe of the mine shaft;Epin;Proceedings of the XXII Winter School on Continuous Media Mechanics,2021

4. New Technical Solution for Vertical Shaft Equipping Using Steel Headframe of Multifunction Purpose;Kassikhina;Proceedings of the 2nd International Innovative Mining Symposium (Devoted to Russian Federation Year of Environment),2017

5. Computer-aided design of multi-purpose steel headframes for mines with a new technical level;Kassikhina;Proceedings of the 5th International Innovative Mining Symposium (IISM),2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3