Analysis of Vibration Characteristics of Hydraulic Excavator Device Under Flat Ground Conditions

Author:

Liu KaileiORCID,Zhong HaifangORCID,Chen Maoze,Yang Jing,Qiang Hongbin,Kang Shaopeng

Abstract

Hydraulic excavators, characterized by their high efficiency and versatility, are crucial equipment in engineering construction. During the automatic excavation process, the excavator may experience resonance phenomena, which can affect the stability of the entire system. In order to study the vibration harmonic response of the excavator arm in the process of reciprocating motion, firstly, the model of the excavator arm is designed in three‐dimensional software, and the finite element meshing software is used to perform hexahedral meshing of the excavator arm model and define the material properties. Secondly, the modal analysis of the excavator arm is carried out by finite element simulation software, and the displacement and acceleration harmonic response analysis is carried out using the modal superposition method. Finally, the vibration experiment of reciprocating motion with different frequencies is carried out on the experimental platform of the excavator arm. The simulation and experimental results show that the maximum value of the displacement and acceleration response of the excavator arm corresponds to the frequency near the second‐order intrinsic frequency, and the excavator arm is greatly affected by the second‐order intrinsic frequency; controlling the frequency of the reciprocating motion of the hydraulic cylinder within 13 Hz can effectively avoid the resonance phenomenon of the excavator arm device.

Funder

Natural Science Research of Jiangsu Higher Education Institutions of China

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3