Application of Compressed Sensing Based on Adaptive Dynamic Mode Decomposition in Signal Transmission and Fault Extraction of Bearing Signal

Author:

Cai ZhixinORCID,Dang ZhangORCID,Wen Ming,Lv YongORCID,Duan Haochun

Abstract

Bearings are widely used in mechanical equipment; nevertheless, potential dangers are also widespread, making bearing fault detection very important. For large equipment, the amount of collected signals tends to be huge, which challenges both signal transmission and storage. To solve this problem, compressed sensing (CS), based on specific dynamic modes of adaptive truncated rank dynamic mode decomposition (ADMD), is adopted to achieve the purpose of compressing and transmitting the signal, as well as extracting fault features. Firstly, this paper has proposed a new fitness function, which is called the synthetic envelope kurtosis characteristic energy difference ratio, and adopted the improved particle swarm optimization algorithm (IPSO) to select the best truncated rank adaptively. Then, the historical signal attempts to be decomposed into a series of temporal and spatial coherent modes, through ADMD, and those modes are filtered and cascaded into a highly self-adaptive dictionary, the DMD dictionary, which approximates the original signal with some error. Next, CS is employed to compress and reconstruct the signal, in order to reduce storage space and improve transmission efficiency. Finally, signals of high quality can be reconstructed through orthogonal matching pursuit (OMP) algorithm. Compared with traditional dictionaries, the DMD dictionary, based on the mode structure generated by ADMD decomposition, ass proposed in this paper, can better represent the original signal in the simulation signal and have good noise reduction performance. The correlation coefficient (CORR) between the reconstructed signal and noise signal is 0.8109, between the reconstructed signal and non-noise signal is 0.9278, and the root mean square error (RMSE) is 0.0659 and 0.0351, respectively. Compared with the traditional SVD and EMD denoising methods, ADMD-CS has better noise reduction performance. In this paper, the signal-to-noise ratio (SNR) is taken as the quantitative indicator of denoising performance. It is found that the SNR of simulation signal and experimental signal processed by ADMD-CS is higher than that of the traditional denoising methods, which is 0.3017 and 0.8407, respectively. The storage space of the signal is quite smaller than traditional methods, and the compression ratios (CR) of the simulation and experimental signals are 66.16% and 59.08%, respectively. In conclusion, ADMD-CS has a good application prospect in signal transmission, storage, and feature extraction.

Funder

National Natural Science Foundation of China

Innovation Group Project of Natural Science Foundation of Hubei province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3