Study on Nonlinear Correlation in Modal Coefficients of the Bionic Airfoil

Author:

Xiao Qianhao,Wang JunORCID,Jiang BoyanORCID,Ding Yanyan,Yang Xiaopei

Abstract

Applying bionic airfoils is essential in enlightening the design of rotating machinery and flow control. Dynamic mode decomposition was used to reveal the low dimensional flow structure of Riblets, Seagull, and Teal bionic airfoils at low Reynolds numbers 1 × 105 and is compared with NACA4412 airfoils. The attack angle of the two-dimensional airfoil is 19°, and the SST k-ω turbulence model and ANSYS fluent were used to obtain the transient flow field data. The sparse identification of nonlinear dynamics reveals the nonlinear correlation between modal coefficients and establishes manifold dynamics. The results show that the bionic airfoil and NACA4412 airfoil have the same type of nonlinear correlation, and the dimension and form of the minimum reduced-order model are consistent. The modal coefficients always appear in the manifold equation in pairs with a phase difference of 90°. The dimension of the manifold equation is two-dimensional, and the absolute value of the coefficient corresponds to the fundamental frequency of airfoil vortex shedding. The reconstructed flow field based on the manifold equation is highly consistent with the numerical simulation flow field, which reveals the accuracy of the manifold equation. The relevant conclusions of this study emphasize the unity of the nonlinear correlation of bionic airfoils.

Funder

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference56 articles.

1. Reviews on Design and Development of Unmanned Aerial Vehicle (Drone) for Different Applications;Aabid;J. Mech. Eng. Res. Dev.,2022

2. The starting and low wind speed behaviour of a small horizontal axis wind turbine;Wright;J. Wind Eng. Ind. Aerod.,2004

3. Numerical simulation of flow characteristics behind the aerodynamic performances on an airfoil with leading edge protuberances;Zhao;Eng. Appl. Comp. Fluid,2017

4. Lewthwaite, M.T., and Amaechi, C.V. (2022). Numerical investigation of winglet aerodynamics and dimple effect of NACA 0017 airfoil for a freight aircraft. Inventions, 7.

5. Enhanced performance of airfoil-based piezoaeroelastic energy harvester: Numerical simulation and experimental verification;Tian;Mech. Syst. Signal Process.,2022

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3