Energy Efficiency Optimization for Machining of Wood Plastic Composite

Author:

Zhu Zhaolong,Buck Dietrich,Guo XiaoleiORCID,Xiong Xianqing,Xu Wei,Cao Pingxiang

Abstract

Enhancing energy efficiency is the key to realizing green manufacturing. One major area of interest in this regard is the improvement of energy efficiency of machine tools during the production of building materials. This project focuses on energy efficiency during the spiral milling of wood plastic composites. To this end, a response surface method was adopted to develop a model and establish the relationship between energy efficiency and milling conditions. Analysis of variance based on individual factors as well as two-factor interactions was performed to gauge their effects on energy efficiency. It was found that milling depth was positively correlated to power efficiency, while spiral angle and feed per tooth displayed non-monotonic behavior. An attempt was made to predict milling conditions that will yield the greatest material removal rate and power efficiency. For wood plastic composites subjected to up-milling, it was determined that a feed per tooth of 0.1 mm, milling depth of 1.5 mm, and spiral angle of 70° were ideal. Considering the potential improvements in energy efficiency and surface quality that these process parameters will bring, it is strongly recommended for use in the industrial machining of wood plastic composites.

Funder

National Natural Science Foundation of China

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference32 articles.

1. Research on enabling technologies and development path;Zhu;J. For. Eng.,2021

2. The efficiency analysis on cutting power of EPB shield cutter;Sun;Mater. Sci. Forum,2011

3. Machining efficiency comparison direction-parallel tool path with contour-parallel tool path;Bo;Comput.-Aided Des.,2002

4. Experimental and numerical investigation on compression creep behavior of wood;Hu;For. Prod. J.,2018

5. Optimization of the energy consumption of a CNC machine cutting tool with hard-to-formalize restrictions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3