Effects of Milling Methods on Cutting Performance of Wood–Plastic Composites Based on Principal Component Analysis

Author:

Zhu Yunqi12ORCID,Buck Dietrich3ORCID,Guan Jun4,Song Meiqi12,Tang Qi4,Guo Xiaolei1,Zhu Zhaolong12ORCID

Affiliation:

1. Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China

2. College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China

3. Wood Science and Engineering, Luleå University of Technology, 931 87 Skellefteå, Sweden

4. Mengtian Furnishings Co., Ltd., Jiashang 314100, China

Abstract

In the industrial machining of wood–plastic composites, optimization of cutting parameters is key to improving workpiece machinability. To explore the influence of different milling methods of straight-tooth milling, helical milling, and tapered milling on the machinability of wood–plastic composite, a milling experiment was performed. Cutting force, cutting temperature, and surface roughness were selected as evaluative factors. Based on experimental results, principal component analysis was used to analyze the significance of each factor’s contribution and to assess different milling methods of wood–plastic composite for different needs. By calculating the total score from principal component analysis, the optimized cutting mode was determined to be straight-tooth milling, with feed per tooth of 0.2 mm and cutting depth of 0.5 mm. Milling methods in order of decreasing cutting force were helical milling > straight-tooth milling > tapered milling. Milling methods in order of decreasing cutting temperature were helical milling > tapered milling > straight-tooth milling. In terms of the tradeoff between surface quality and processing efficiency, tapered milling is suitable for finishing, considering the machining quality, while helical milling is suitable for roughing, considering the machining efficiency. One of the contributions of this study is to link three separate milling study systems (straight-tooth milling, helical milling, and tapered milling) into one system.

Funder

2024 Nanjing Forestry University Students’ Practical Innovation Training Program Project

Postgraduate Research & Practice Innovation Program of Jiangsu Province

International Cooperation Joint Laboratory for Production, Education, Research, and Application of Ecological Health Care on Home Furnishing

Luleå University of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3