Anthropomorphic Design and Self-Reported Behavioral Trust: The Case of a Virtual Assistant in a Highly Automated Car

Author:

Lawson-Guidigbe Clarisse12,Amokrane-Ferka Kahina1ORCID,Louveton Nicolas3,Leblanc Benoit2,Rousseaux Virgil1,André Jean-Marc2ORCID

Affiliation:

1. IRT SystemX, 91120 Palaiseau, France

2. Laboratoire IMS CNRS UMR 5218, Bordeaux INP-ENSC, Université de Bordeaux, 33400 Talence, France

3. CeRCA CNRS UMR 7295, Université de Poitiers, Université François-Rabelais de Tours, 86073 Poitiers, France

Abstract

The latest advances in car automation present new challenges in vehicle–driver interactions. Indeed, acceptance and adoption of high levels of automation (when full control of the driving task is given to the automated system) are conditioned by human factors such as user trust. In this work, we study the impact of anthropomorphic design on user trust in the context of a highly automated car. A virtual assistant was designed using two levels of anthropomorphic design: “voice-only” and “voice with visual appearance”. The visual appearance was a three-dimensional model, integrated as a hologram in the cockpit of a driving simulator. In a driving simulator study, we compared the three interfaces: two versions of the virtual assistant interface and the baseline interface with no anthropomorphic attributes. We measured trust versus perceived anthropomorphism. We also studied the evolution of trust throughout a range of driving scenarios. We finally analyzed participants’ reaction time to takeover request events. We found a significant correlation between perceived anthropomorphism and trust. However, the three interfaces tested did not significantly differentiate in terms of perceived anthropomorphism while trust converged over time across all our measurements. Finally, we found that the anthropomorphic assistant positively impacts reaction time for one takeover request scenario. We discuss methodological issues and implication for design and further research.

Funder

the French government under the “France 2030” program, as part of the SystemX Technological Research Institute within the CMI project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3