Abstract
Laser directed energy deposition (LDED) can be deployed for depositing high-performance materials for various engineering applications. Alumina-forming steel is a high-performance material that possesses excellent corrosion and oxidation resistance, finding application in the power generation sector. In the present work, LDED using powder feeding (LDED-PF) was used to deposit Fe20Cr5.5AlY alloy using single-track, multi-track, and multi-layer deposition on SS 316L substrate. Response surface methodology (RSM)-based optimization was used to optimize the single-track deposition. The relationship between the track geometry parameters and the build rate with the LDED-PF processing parameters was studied. Further, the nonlinear relationship among the major process parameters was developed and an analysis of variance (ANOVA) was utilized to find significant parameters. The multi-track deposition yielded densely clad layers with a columnar grain structure. The presence of complex oxide slag of Y, Al, and Zr on the clad layer was detected. A micro-hardness of 240–285 HV was observed in the clad layer, with a hardness of 1088–1276 HV at the slag layer. The multi-layered structures showed a relative density of 99.7% with columnar growth and an average microhardness of 242 HV. The study paves the way for the deposition of dense alumina-forming steel structures for building components for power generation applications.
Funder
Federal development of Ontario
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献