Effect of surface remelting on the characteristics of IN718 components fabricated using laser powder directed energy deposition

Author:

Thanumoorthy Raja S,Jadhav Satyajeet Vijay,Oyyaravelu RORCID,Bontha SrikanthORCID,A S S BalanORCID

Abstract

Abstract Laser Powder Directed Energy Deposition (LP-DED) fabricated components exhibit poor surface finish, necessitating additional post-processing steps prior to their practical application. Enhancing the surface quality of additively manufactured IN718 specimens through conventional post-processing methods is particularly challenging, given the material’s poor machinability and the complexity of the fabricated components. The current study is centered on comprehending the impact of Laser Surface Remelting (LSR) on the surface properties of Laser Powder Directed Energy Deposited (LP-DED) IN718 material. To gain insights into how remelting influences surface characteristics, remelting was carried out using various sets of parameters. The remelted zone exhibited a refined grain structure, leading to increased hardness. Moreover, significant reductions in surface roughness and residual stress were observed in the remelted samples. Regression analysis indicated that laser power played a pivotal role, with positive impact on surface finish and depth of influence but a negative impact on residual stress and hardness. Therefore, considering all the comparison metrics, remelting using laser power of 150 W and a scan speed of 1140 mm min−1 were found to yield optimal surface conditions.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3