PIV Measurement and Proper Orthogonal Decomposition Analysis of Annular Gap Flow of a Hydraulic Machine

Author:

Zhao YimingORCID,Li Yongye,Song Xiaoteng

Abstract

The fluid stress or flow-induced vibration of annular gap flow always has some influence on the stable working conditions of a hydraulic machine. A time-averaged analysis of flow may not have to explicitly acknowledge these factors. Accordingly, a finite-axial-length annular gap was measured via particle image velocimetry (PIV), with inner boundary motion and a stable outer boundary. As a statistic result regarding the fluid stress, the Reynolds stresses soared in the first region, were sustained in the middle region, but decreased at last. The flow had a higher convective transportation intensity in the radial direction than in other directions. Flow diagnostics were also performed by proper orthogonal decomposition (POD). As a result, the coherent structures were found. Then, the power spectrum density (PSD) functions were also calculated for finding the flow-induced vibration characteristics; the functions had high amplitude in the low-frequency domain and low amplitude in the high-frequency domain, with an order of magnitude between the two amplitudes of 10−1 to 10−2. In addition, the frequency was higher at a smaller gap width in the middle-frequency domain, but the condition was the opposite in the high-frequency domain. In conclusion, the fluid stresses were changeable and uneven along the flow direction, and flow-induced vibration obviously existed. Remarkably, the turbulence characteristics of the annular gap flow were not “laminar approximating,” while the diameter ratio of the gap was 0.6 to 0.8.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3