Optimizing the Formation of Hydraulic Cylinder Surfaces, Taking into Account Their Microrelief Topography Analyzed during Different Operations

Author:

Dzyura VolodymyrORCID,Maruschak Pavlo

Abstract

Causes of the in-service damage to hydrocylinder liners were investigated, and the requirements to their working surfaces were systematized. Roughness parameter Ra was found not to provide a precise estimate of the surface quality because its reduction did not affect surface microgeometry. Additionally, the surface quality was assessed by the Abbott-Firestone curve during the finishing operation. The optimized manufacturing technology for obtaining hydrocylinder liners was offered based on having the required microgeometry and surface quality provided by cutting operations. The quality and service characteristics of internal surfaces of hydrocylinder liners were improved by changing technological operations. In particular, the semi-finish turning was chosen to provide for the surface roughness parameter Ra within 6.3–8.0 μm and the roughness pitch parameter S within 0.4–0.6 mm and homogeneous surface structure. The finishing rolling was replaced by burnishing to form a regular microrelief.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3