Fault Diagnosis of Rotating Machinery Based on Two-Stage Compressed Sensing

Author:

You Xianglong1,Li Jiacheng1,Deng Zhongwei1ORCID,Zhang Kai1,Yuan Hang2

Affiliation:

1. College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044, China

2. College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China

Abstract

Intelligent on-site fault diagnosis and professional vibration analysis are essential for the safety and stability of rotating machinery operation. This paper represents a fault diagnosis scheme based on two-stage compressed sensing for triaxial vibration data, which realizes fault diagnosis for rotating machinery based on compressed data and data reconstruction for professional vibration analysis. In the 1st stage, the triaxial vibration signals are compressed using a pre-designed hybrid measurement matrix; these compressed data can be used both for time-frequency transform and for vibration data reconstruction. In the 2nd stage, the frequency spectra of the triaxial vibration signals are fused and further compressed using another pre-designed joint measurement matrix, which inhibits the high-frequency noises simultaneously. Finally, the fused spectra are employed as feature vectors in sparse-representation-based classification, where the proposed batch matching pursuit (BMP) algorithm is utilized to calculate the sparse vectors. The two-stage compression scheme and the BMP algorithm minimize the computational cost of on-site fault diagnosis, which is suitable for edge computing platforms. Meanwhile, the compressed vibration data can be reconstructed, which provides evidence for professional vibration analysis. The method proposed in this study is validated by two practical case studies, in which the accuracies are 99.73% and 96.70%, respectively.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3