Feature Mode Decomposition: New Decomposition Theory for Rotating Machinery Fault Diagnosis
Author:
Affiliation:
1. School of Reliability and Systems Engineering, Beihang University, Haidian, China
2. School of Energy and Power Engineering, Beihang University, Jiangsu, China
Funder
National Natural Science Foundation of China
Science and Technology on Reliability and Environmental Engineering Laboratory
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Control and Systems Engineering
Link
http://xplorestaging.ieee.org/ielx7/41/9913345/09732251.pdf?arnumber=9732251
Reference30 articles.
1. A review on the application of blind deconvolution in machinery fault diagnosis
2. ENSEMBLE EMPIRICAL MODE DECOMPOSITION: A NOISE-ASSISTED DATA ANALYSIS METHOD
3. The local mean decomposition and its application to EEG perception data
4. Application of Bandwidth EMD and Adaptive Multiscale Morphology Analysis for Incipient Fault Diagnosis of Rolling Bearings
5. Improved local mean decomposition for modulation information mining and its application to machinery fault diagnosis
Cited by 127 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Robust optimized weights spectrum: Enhanced interpretable fault feature extraction method by solving frequency fluctuation problem;Mechanical Systems and Signal Processing;2025-01
2. Classifier-guided neural blind deconvolution: A physics-informed denoising module for bearing fault diagnosis under noisy conditions;Mechanical Systems and Signal Processing;2025-01
3. Cyclostationarity blind deconvolution via eigenvector screening and its applications to the condition monitoring of rotating machinery;Mechanical Systems and Signal Processing;2025-01
4. MRCFN: A multi-sensor residual convolutional fusion network for intelligent fault diagnosis of bearings in noisy and small sample scenarios;Expert Systems with Applications;2025-01
5. Multi-objective optimal deep deconvolution and its application to early fault signal enhancement of rotating machineries;Mechanical Systems and Signal Processing;2024-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3