Magnetic Anchoring Considerations for Retractors Supporting Manual and Robot-Assisted Minimally Invasive Surgery

Author:

Nigicser Illés,Oldfield Matthew,Haidegger TamásORCID

Abstract

The rise and advancement of minimally invasive surgery (MIS) has significantly improved patient outcomes, yet its technical challenges—such as tissue manipulation and tissue retraction—are not yet overcome. Robotic surgery offers some compensation for the ergonomic challenges, as retraction typically requires an extra robotic arm, which makes the complete system more costly. Our research aimed to explore the potential of rapidly deployable structures for soft tissue actuation and retraction, developing clinical and technical requirements and putting forward a critically evaluated concept design. With systematic measurements, we aimed to assess the load capacities and force tolerance of different magnetic constructions. Experimental and simulation work was conducted on the magnetic coupling technology to investigate the conditions where the clinically required lifting force of 11.25 N could be achieved for liver retraction. Various structure designs were investigated and tested with N52 neodymium magnets to create stable mechanisms for tissue retraction. The simplified design of a new MIS laparoscopic instrument was developed, including a deployable structure connecting the three internal rod magnets with joints and linkages that could act as an actuator for liver retraction. The deployable structure was designed to anchor strings or bands that could facilitate the lifting or sideways folding of the liver creating sufficient workspace for the target upper abdominal procedures. The critical analysis of the project concluded a notable potential of the developed solution for achieving improved liver retraction with minimal tissue damage and minimal distraction of the surgeon from the main focus of the operation, which could be beneficial, in principle, even at robot-assisted procedures.

Funder

National Research, Development and Innovation Office

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3