Endoscopic Image-Based Skill Assessment in Robot-Assisted Minimally Invasive Surgery

Author:

Lajkó GáborORCID,Nagyné Elek RenátaORCID,Haidegger TamásORCID

Abstract

Objective skill assessment-based personal performance feedback is a vital part of surgical training. Either kinematic—acquired through surgical robotic systems, mounted sensors on tooltips or wearable sensors—or visual input data can be employed to perform objective algorithm-driven skill assessment. Kinematic data have been successfully linked with the expertise of surgeons performing Robot-Assisted Minimally Invasive Surgery (RAMIS) procedures, but for traditional, manual Minimally Invasive Surgery (MIS), they are not readily available as a method. 3D visual features-based evaluation methods tend to outperform 2D methods, but their utility is limited and not suited to MIS training, therefore our proposed solution relies on 2D features. The application of additional sensors potentially enhances the performance of either approach. This paper introduces a general 2D image-based solution that enables the creation and application of surgical skill assessment in any training environment. The 2D features were processed using the feature extraction techniques of a previously published benchmark to assess the attainable accuracy. We relied on the JHU–ISI Gesture and Skill Assessment Working Set dataset—co-developed by the Johns Hopkins University and Intuitive Surgical Inc. Using this well-established set gives us the opportunity to comparatively evaluate different feature extraction techniques. The algorithm reached up to 95.74% accuracy in individual trials. The highest mean accuracy—averaged over five cross-validation trials—for the surgical subtask of Knot-Tying was 83.54%, for Needle-Passing 84.23% and for Suturing 81.58%. The proposed method measured well against the state of the art in 2D visual-based skill assessment, with more than 80% accuracy for all three surgical subtasks available in JIGSAWS (Knot-Tying, Suturing and Needle-Passing). By introducing new visual features—such as image-based orientation and image-based collision detection—or, from the evaluation side, utilising other Support Vector Machine kernel methods, tuning the hyperparameters or using other classification methods (e.g., the boosted trees algorithm) instead, classification accuracy can be further improved. We showed the potential use of optical flow as an input for RAMIS skill assessment, highlighting the maximum accuracy achievable with these data by evaluating it with an established skill assessment benchmark, by evaluating its methods independently. The highest performing method, the Residual Neural Network, reached means of 81.89%, 84.23% and 83.54% accuracy for the skills of Suturing, Needle-Passing and Knot-Tying, respectively.

Funder

National Research, Development and Innovation Office

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference56 articles.

1. History of minimally invasive surgery;Radojcic;Med. Pregl.,2009

2. A short history of robotic surgery

3. A DVRK-Based Framework for Surgical Subtask Automation;Nagy,2019

4. Sensory-Glove-Based Open Surgery Skill Evaluation

5. Automatically rating trainee skill at a pediatric laparoscopic suturing task

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3