Abstract
An advanced LKS (lane keeping system) for use on curving roads is presented to maintain autonomous vehicle driving within the target lane, without unintentional lane departure. There are the following two main objectives in designing this system: one is performing perfect lane keeping and the other is ensuring the dynamic stability of the vehicle, especially when driving on a curving and low-friction road with time-varying high speed. In this paper, a combined vehicle model, consisting of a lane keeping model and a vehicle lateral dynamic model, is firstly introduced. Then, a novel adaptive-weight predictive controller is used to calculate the desired steering angle and the additional yaw moment which provide coordinated control forlane keeping and dynamic stability control. Meanwhile, a square-root cubature Kalman filter-based vehicle sideslip angle observer, with a strong tracking theory modification (ST-SRCKF), is established to estimate the sideslip angle during the driving process. Finally, HIL (hardware-in-the-loop) tests and field tests are constructed, and the results show the effectiveness of our proposed LKS controller and ST-SRCKF sideslip angle estimation.
Funder
Natural Science Foundation of Beijing
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献