Multi-Robot Task Scheduling for Consensus-Based Fault-Resilient Intelligent Behavior in Smart Factories

Author:

Kalempa Vivian Cremer12ORCID,Piardi Luis23ORCID,Limeira Marcelo2,de Oliveira Andre Schneider2ORCID

Affiliation:

1. Department of Information Systems, Universidade do Estado de Santa Catarina (UDESC), Luiz Fernando Hastreiter St., 180, São Bento do Sul 89283-081, Brazil

2. Graduate Program in Electrical and Computer Engineering, Universidade Tecnológica Federal do Paraná (UTFPR), Av. Sete de Setembro, 3165, Curitiba 80230-901, Brazil

3. Research Center in Digitalization and Intelligent Robotics (CeDRI), Instituto Politécnico de Bragança (IPB), Campus de Santa Apolónia, 5300-253 Bragança, Portugal

Abstract

In smart factories, several mobile and autonomous robots are being utilized in warehouses to reduce overhead and operating costs. In this context, this paper presents a consensus-based fault-resilient intelligent mechanism called Consensual Fault-Resilient Behavior (CFRB). The proposed approach is based on three hierarchical plans: imposition, negotiation, and consensus. Fault resilience is achieved using the collective behavior of a multi-robot system that applies ternary decisions based on these plans. The difference between this paper and our previous work is on the consensual level. As it is suitable for the analysis and design of coordinated behavior between autonomous robots, the consensus plan is restructured and enhanced. The proposed approach is tested and evaluated in a virtual warehouse based on a real environment. In addition, it is compared with other current approaches, and the results are presented, demonstrating its efficiency.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—

the Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on AMCL Algorithm Coupled with DWA Algorithm in Logistics Scenarios;2024 IEEE International Workshop on Radio Frequency and Antenna Technologies (iWRF&AT);2024-05-31

2. Control of Robot Motion in Radial Mass Density Field;WSEAS TRANSACTIONS ON SYSTEMS AND CONTROL;2023-12-31

3. Cooperative Path Planning for Object Transportation with Fault Management;2023-08-29

4. Cooperative Path Planning for Object Transportation with Fault Management;2023-05-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3