Stewart Platform Motion Control Automation with Industrial Resources to Perform Cycloidal and Oceanic Wave Trajectories

Author:

Silva DiegoORCID,Garrido JulioORCID,Riveiro Enrique

Abstract

Research on motion control automation of Stewart Platforms with industrial configurations (motion and controllers) is less present in the literature than other types of automation with low-cost devices such as Arduino, or via simulations in MATLAB or Simulink. Moreover, direct kinematics is less widely applied because of heavy calculation in real-time device implementations. The paper first analyzes the design, kinematic modelling, and trajectory generation of a Stewart Platform robot and addresses direct kinematics and motion automation. Next, the automation architecture with industrial controllers is detailed. The paper presents the results of the inverse kinematic in two use scenarios: cycloidal trajectories that carry out point-to-point and oceanic wave movements. The efficient calculation of direct kinematics in real time was also studied. This opens the possibility of closing the positioning loop at the controller or implementing supervisors such as the “tracking error”. Further research might investigate the effects of the sequence planning to avoid collisions with objects inside the workspace while considering the feedback of the tracking error.

Funder

European Regional Development Fund. Atlantic Area Programme.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference107 articles.

1. Parallel Robot;Jin,2014

2. Dynamics Verification Experiment of the Stewart Parallel Manipulator

3. Control of a Stewart-Gough Platform for Earthquake Ground Motion Simulation;Alvarado Requena,2020

4. A Platform with Six Degrees of Freedom

5. Kinematic Geometry of Mechanisms;Hunt,1978

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3