Improved Bayes-Based Reliability Prediction of Small-Sample Hall Current Sensors

Author:

Chen Ting1,Liu Zhengyu2,Ju Ling1,Lu Yongling2,Wei Shike3

Affiliation:

1. Taizhou Power Supply Branch, State Grid Jiangsu Electric Power Co., Ltd., Taizhou 225300, China

2. Electric Power Research Institute, State Grid Jiangsu Electric Power Co., Ltd., Nanjing 210000, China

3. School of Electrical & Automation Engineering NNU, Nanjing Normal University, Nanjing 210000, China

Abstract

As a type of magnetic sensor known for its high reliability and long lifespan, the reliability issues of Hall current sensors have attracted attention in fields such as electromagnetic compatibility. However, there is still a lack of sufficient failure data for reliability prediction. Therefore, a small-sample reliability prediction method based on the improved Bayes method is proposed. Firstly, the pseudo-failure lifespan data are acquired through the accelerated degradation testing of Hall current sensors subjected to temperature and humidity stressors, and the life is examined by the Weibull distribution; then, the data expanded using the BP neural network model are used as the a priori information, and the parameter estimation of the Weibull distribution is obtained by the Bootstrap method and Gibbs sampling; finally, the Peck accelerated model is implemented to achieve the normal temperature-humidity reliability prediction of Hall current sensors under stress, and the utility of the enhanced Bayes technique is confirmed through the application of the Wiener stochastic process model.

Funder

State Grid Jiangsu Electric Power Co., Ltd. Technology Project New IOT Sensing Technology and Equipment for Power Equipment

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3