EHB Gear-Drive Symmetric Dead-Zone Finite-Time Adaptive Control

Author:

Wang Shuai1,Cao Qinghua1,Ma Fukuo1,Wu Jian1ORCID

Affiliation:

1. School of Automotive Engineering, Liaocheng University, Liaocheng 252000, China

Abstract

Intelligent driving vehicles require more accurate and stable braking control. Electrohydraulic braking (EHB) systems can better adapt to the development of autonomous driving technology. The gear transmission system plays a crucial role in EHB deceleration and torque increase mechanisms. However, its dead-zone nonlinearity poses challenges for EHB control. To address the position-control problem in the EHB gear transmission system, we propose a finite-time adaptive control method for the symmetrical dead zone. This approach combines adaptive control theory with finite-time control theory and designs parameter-updating laws for the unknown parameters in the system. Boundary estimates are introduced into the parameter-update laws and control laws to compensate for unknown disturbances. By adjusting the relevant parameters, the convergence rate can be improved, ensuring that errors converge within a specified range within a limited time. After modifying the parameter-updating laws and control laws, all closed-loop signals remain bounded. Finally, we validate the proposed control strategy through simulation and hardware-in-the-loop (HIL) testing. The results demonstrate that the control strategy developed in this study achieves high tracking accuracy and stability even in the presence of dead zones, unknown parameters, and unknown interferences in the EHB gear-drive servo system.

Funder

Shandong Provincial Higher School Youth Innovation Technology Project of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3