Reinforcement Learning-Based Dynamic Zone Placement Variable Speed Limit Control for Mixed Traffic Flows Using Speed Transition Matrices for State Estimation

Author:

Vrbanić Filip1ORCID,Tišljarić Leo12ORCID,Majstorović Željko1ORCID,Ivanjko Edouard1ORCID

Affiliation:

1. Faculty of Transport and Traffic Sciences, University of Zagreb, Vukelićeva Street, 4, HR-10000 Zagreb, Croatia

2. INTIS d.o.o., Bani 73a, Buzin, HR-10010 Zagreb, Croatia

Abstract

Current transport infrastructure and traffic management systems are overburdened due to the increasing demand for road capacity, which often leads to congestion. Building more infrastructure is not always a practical strategy to increase road capacity. Therefore, services from Intelligent Transportation Systems (ITSs) are commonly applied to increase the level of service. The growth of connected and autonomous vehicles (CAVs) brings new opportunities to the traffic management system. One of those approaches is Variable Speed Limit (VSL) control, and in this paper a VSL based on Q-Learning (QL) using CAVs as mobile sensors and actuators in combination with Speed Transition Matrices (STMs) for state estimation is developed and examined. The proposed Dynamic STM-QL-VSL (STM-QL-DVSL) algorithm was evaluated in seven traffic scenarios with CAV penetration rates ranging from 10% to 100%. The proposed STM-QL-DVSL algorithm utilizes two sets of actions that include dynamic speed limit zone positions and computed speed limits. The proposed algorithm was compared to no control, rule-based VSL, and two STM-QL-VSL configurations with fixed VSL zones. The developed STM-QL-DVSL outperformed all other control strategies and improved measured macroscopic traffic parameters like Total Time Spent (TTS) and Mean Travel Time (MTT) by learning the control policy for each simulated scenario.

Funder

University of Zagreb and Faculty of Transport and Traffic Sciences

Croatian Science Foundation

European Regional Development Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3