An Overview of Reinforcement Learning Methods for Variable Speed Limit Control

Author:

Kušić KrešimirORCID,Ivanjko EdouardORCID,Gregurić MartinORCID,Miletić MladenORCID

Abstract

Variable Speed Limit (VSL) control systems are widely studied as solutions for improving safety and throughput on urban motorways. Machine learning techniques, specifically Reinforcement Learning (RL) methods, are a promising alternative for setting up VSL since they can learn and react to different traffic situations without knowing the explicit model of the motorway dynamics. However, the efficiency of combined RL-VSL is highly related to the class of the used RL algorithm, and description of the managed motorway section in which the RL-VSL agent sets the appropriate speed limits. Currently, there is no existing overview of RL algorithm applications in the domain of VSL. Therefore, a comprehensive survey on the state of the art of RL-VSL is presented. Best practices are summarized, and new viewpoints and future research directions, including an overview of current open research questions are presented.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3