Assessment of a Second Life City Vehicle Refurbished to Include Hybrid Powertrain Technology

Author:

Martinez-Boggio Santiago1,Irimescu Adrian2,Curto-Risso Pedro1ORCID,Merola Simona Silvia2ORCID

Affiliation:

1. Instituto de Ingeniería Mecánica y Producción Industrial (IIMPI), Facultad de Ingeniería (Fing), Universidad de la República (Udelar), Julio Herrera y Reissig 565, Montevideo 11300, Uruguay

2. Science and Technology Institute for Sustainable Energy and Mobility STEMS—CNR, Via G. Marconi 4, 80125 Napoli, Italy

Abstract

Due to increased powertrain efficiency, electrified propulsion has seen significant diffusion in the automotive sector in recent years. Despite the possible reduction in tailpipe CO2 emissions, the advancements in the technology are not sufficient to tackle the challenge of global greenhouse emissions. An additional action could be the use of second life vehicles to drastically reduce the emissions associated with vehicle manufacturing and recycling/disposal. Urban vehicles are the most suitable to be electrified due to the large start-and-stop cycling and the possibility of using regenerative braking. Therefore, this work considered the hypothesis of hybridizing a small size passenger car with parallel and Series technology. The powertrain is designed for an old vehicle suitable for second life use after refurbishment. A numerical model of the propulsion components was built and applied after previous validation in homologation conditions. Several urban cycles representative of European cities were considered. The final hybrid model is compared with two baselines: non-hybrid and pure electric version already lunched in the market by the manufacturer. The findings indicate that used HEV cars could be a viable option for cutting CO2 emissions from city vehicles without reducing their range. In comparison to non-hybrid vehicles, the series can typically reduce CO2 emissions by 41%, compared to the P2’s 32%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3