A survey of second-life batteries based on techno-economic perspective and applications-based analysis

Author:

Iqbal HumaORCID,Sarwar Sohail,Kirli Desen,Shek Jonathan K. H.,Kiprakis Aristides E.

Abstract

AbstractThe penetration of electrical vehicles (EVs) is exponentially rising to decarbonize the transport sector resulting in the research problem regarding the future of their retired batteries. Landfill disposal poses an environmental hazard, therefore, recycling or reusing them as second-life batteries (SLBs) are the inevitable options. Reusing the EV batteries with significant remaining useful life in stationary storage applications maximizes the economic benefits while extending the useful lifetime before recycling. Following a critical review of the research in SLBs, the key areas were identified as accurate State of Health (SOH) estimation, optimization of health indicators, battery life cycle assessment including repurposing, End-Of-Life (EOL) extension techniques and significance of first-life degradation data on ageing in second-life applications. The inconsistencies found in the reviewed literature showed that the absence of degradation data from first as well as second life, has a serious impact on accurate remaining useful life (RUL) prediction and SOH estimation. This review, for the first time, critically surveyed the recent studies in the field of identification, selection and control of application-based health indicators in relation to the accurate SOH estimation, offering future research directions in this emerging research area. In addition to the technical challenges, this paper also analyzed the economic perspective of SLBs, highlighting the impact of accuracy in second-life SOH estimation and RUL extension on their projected revenue in stationary storage applications. Lack of standard business model based on future market trends of energy and battery pricing and governing policies for SLBs are identified as urgent research gaps.

Funder

Shanghai Jiao Tong University

Publisher

Springer Science and Business Media LLC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3