Developing Digital Observer of Angular Gaps in Rolling Stand Mechatronic System

Author:

Gasiyarova Olga A.,Karandaev Alexander S.,Erdakov Ivan N.ORCID,Loginov Boris M.,Khramshin Vadim R.ORCID

Abstract

Algorithms for monitoring the rolling mill mechatronic system state should be developed on the basis of modern digital technologies. Developing digital shadows (observers) of system state parameters in the periodic measurement mode is promising. This study relevance is defined by frequent emergency breakdowns of rolling stand mechanical transmissions. Most breakdowns are caused by worn end clutches (heads) of countershafts (spindles) transmitting rotation from the motor to the rolls. This is caused by elastic oscillations due to closing angular gaps when the metal enters the stand. The spindle joint angular gap increases over time with the mill operation. Therefore, it is an important diagnostic parameter that allows for an estimation of the transmission serviceability. In this regard, the problem of monitoring the angular gaps in the rolling stand mechatronic systems is relevant. The paper considers developing an observer of angular gaps in the spindle joints of the ‘electric drive-stand’ mechatronic system of the plate Mill 5000 of Magnitogorsk Iron and Steel Works PJSC (MMK PJSC). The monitored signal (angular gap) is calculated with the mathematical processing of the motor’s physical parameters (speed and electromagnetic torque), measured at a given frequency. The gap is determined indirectly by integrating the speed during its closing. To achieve this, the speed is controlled according to the triangular tachogram at no load. The stand’s electromechanical system modes have been studied using mathematical simulation. The observer’s practical use expediency has been reasoned. The structure of the observer-based angular gap monitoring information system is given. The system has been full-scale tested on Mill 5000, which has confirmed the developed algorithm efficiency. The study’s contribution is a justified and implemented concept of a relatively simple technical solution that can be commercially implemented without extra costs. The angular gap calculation algorithm does not involve complex mathematical techniques and can be implemented in industrial rolling mill controllers. Monitoring is automated without human involvement, which eliminates the human factor. The solution has a specific practical focus and is recommended for implementation at operating rolling mills.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference60 articles.

1. Predictive maintenance (PdM) analysis matrix: A tool to determine technical specifications for PdM ready-equipment

2. A Survey of Predictive Maintenance: Systems, Purposes and Approacheshttps://www.researchgate.net/publication/337971929_A_Survey_of_Predictive_Maintenance_Systems_Purposes_and_Approaches

3. Model Based Monitoring of Dynamic Loads and Remaining Useful Life Prediction in Rolling Mills and Heavy Machinery

4. Controlling mechanical systems with backlash—a survey

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3