Integrated Path Tracking and Lateral Stability Control with Four-Wheel Independent Steering for Autonomous Electric Vehicles on Low Friction Roads

Author:

Jeong YonghwanORCID,Yim SeongjinORCID

Abstract

This paper presents a method to design an integrated path tracking and lateral stability controller for an autonomous electric vehicle with four-wheel independent steering (4WIS) on low friction roads. Recent advances in autonomous driving have led to extensive studies on path tracking control. However, path tracking is difficult on low friction roads. In this paper, path tracking control was converted to the yaw rate tracking one to cope with problems caused by low friction roads. To generate a reference yaw rate for path tracking, we present several methods using a driver model and a target path. For yaw rate tracking, we designed a controller with a two-layer control hierarchy, i.e., upper and lower layers. The control yaw moment was calculated using a direct yaw moment controller in the upper layer. In the low layer, a control allocation method was adopted to allocate the control yaw moment into steering angles of 4WIS. To verify the performance of the proposed controller, we conducted a simulation on vehicle simulation software. From the simulation results, it is shown that the proposed controller is effective for path tracking and lateral stability on low friction roads. To analyze path tracking and lateral stability performance of the proposed controller on low friction roads, the effects of the steady-state yaw rate gain are investigated from the simulation results.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference62 articles.

1. Towards connected autonomous driving: review of use-cases

2. A Survey of Autonomous Driving: Common Practices and Emerging Technologies

3. Explanations in Autonomous Driving: A Survey

4. Identifying the causes of road crashes in Europe;Thomas;Ann. Adv. Automot. Med.,2013

5. Critical reasons for crashes investigated in the national motor vehicle crash causation survey;NHTSA,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3