An Adaptive Torque Observer Based on Fuzzy Inference for Flexible Joint Application

Author:

Liu Yang1,Song Bao1,Zhou Xiangdong1,Gao Yuting2ORCID,Chen Tianhang3

Affiliation:

1. School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

2. School of Electrical Engineering and Automation, Wuhan University, Wuhan 430074, China

3. Wuhan Jiutong Intelligent Technology Co., Ltd., Wuhan 430074, China

Abstract

Torque observation techniques have been widely employed to estimate the load torque of flexible joints driven by a permanent magnet synchronous machine (PMSM). However, the performance of the observer degrades significantly when the position and orientation of the robot continuously changes, resulting in substantial irregular load variations. In this paper, an adaptive torque observer based on fuzzy inference is proposed to overcome this issue. Instead of relying on theoretical or numerical derivation, the relationship between the load inertia and the closed-loop poles of the torque observer is expressed by fuzzy inference. This approach enables the flexible configuration of the poles based on the load inertia, allowing for automatic tuning of the gain matrix. Consequently, the observer can ensure robustness and maintain superior performance under varying load conditions. The effectiveness of the proposed observer is validated through simulation and experimental results. It shows that compared to the classical Luenberger observer, the proposed adaptive torque observer can achieve more accurate observation results and exhibits a more dynamic response in the presence of varying load inertia.

Funder

Key Research and Development Program of Dongguan City

Key Research and Development Program of Hubei Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3