Sensorless Control of Permanent Magnet Synchronous Machine with Magnetic Saliency Tracking Based on Voltage Signal Injection

Author:

Ilioudis Vasilios C.

Abstract

This paper presents a sensorless control method of a permanent magnet synchronous machine (PMSM) with magnetic saliency estimation. This is based on a high-frequency injection (HFI) technique applied on the modified PMSM model in the γδ reference frame. Except for sensorless control, an emphasis is placed on the magnetic saliency estimation to indicate a practical approach in tracking PMSM inductance variations. The magnetic saliency is determined using calculations embedded in the speed and position algorithm through current measurements. A notable characteristic of the modified PMSM model is that the corresponding rotor flux integrates both permanent magnet and saliency term fluxes. In applying a HFI technique for sensorless control, the structure of the PMSM flux model is formatted accordingly. A novel inductance matrix is derived that is completely compatible with the HFI methodology, since its elements include terms of angle error differential and average inductances. In addition, a sliding mode observer (SMO) is designed to estimate the speed and angle of rotor flux based on equivalent control applying a smooth function of the angle error instead of a sign one to reduce the chattering phenomenon. The control strategy is principally based on the adequacy of the proposed modified model and on the appropriateness of the SMO structure to successfully track the rotor flux position with the required stability and accuracy. Simulation results demonstrate the performance of the PMSM sensorless control verifying the effectiveness of the proposed algorithm to detect PMSM saliency, speed and position in steady state and transient modes successfully.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3