An Improved Model−Free Current Predictive Control of Permanent Magnet Synchronous Motor Based on High−Gain Disturbance Observer

Author:

Zhang Yufeng,Wu Zihui,Yan Qi,Huang Nan,Du GuanghuiORCID

Abstract

Predictive current control (PCC) is an advanced control strategy for permanent magnet synchronous motors (PMSM). When the motor drive system is undisturbed, predictive current control exhibits a good dynamic response speed and steady−state performance, but the conventional PCC control performance of PMSM that depends on the motor body model is vulnerable to parameter perturbation. Aiming at this problem, an improved model−free predictive current control (IMFPCC) strategy based on a high−gain disturbance observer (HGDO) is proposed in this paper. The proposed strategy is introduced with the idea of model−free control, relying only on the system input and output to build an ultra−local current prediction model, which gets rid of the constraints of the motor body parameters. In the paper, the ultra−local structure is optimized by comparing and analyzing the equation of the state of the classical ultra−local structure and PMSM system. The system’s current state variables are incorporated into the ultra−local system modeling, as a result, the current estimation errors existing in the classical ultra−local structure are eliminated. For the unmodeled and parametric perturbation part of the ultra−local system, a high−gain disturbance observer is designed to estimate it in real time. Finally, the proposed IMFPCC strategy is compared with the conventional model−based predictive current control (MPCC) and the conventional model−free predictive current control (CMFPCC) in simulation and experiment. The results show that the current steady−state error of the IMFPCC strategy in the case of parameter variation is only 50% of the MPCC method, which proves the effectiveness and correctness of the proposed strategy.

Funder

National Nature Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3