Abstract
Predictive current control (PCC) is an advanced control strategy for permanent magnet synchronous motors (PMSM). When the motor drive system is undisturbed, predictive current control exhibits a good dynamic response speed and steady−state performance, but the conventional PCC control performance of PMSM that depends on the motor body model is vulnerable to parameter perturbation. Aiming at this problem, an improved model−free predictive current control (IMFPCC) strategy based on a high−gain disturbance observer (HGDO) is proposed in this paper. The proposed strategy is introduced with the idea of model−free control, relying only on the system input and output to build an ultra−local current prediction model, which gets rid of the constraints of the motor body parameters. In the paper, the ultra−local structure is optimized by comparing and analyzing the equation of the state of the classical ultra−local structure and PMSM system. The system’s current state variables are incorporated into the ultra−local system modeling, as a result, the current estimation errors existing in the classical ultra−local structure are eliminated. For the unmodeled and parametric perturbation part of the ultra−local system, a high−gain disturbance observer is designed to estimate it in real time. Finally, the proposed IMFPCC strategy is compared with the conventional model−based predictive current control (MPCC) and the conventional model−free predictive current control (CMFPCC) in simulation and experiment. The results show that the current steady−state error of the IMFPCC strategy in the case of parameter variation is only 50% of the MPCC method, which proves the effectiveness and correctness of the proposed strategy.
Funder
National Nature Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献