Automatic Shift Control of an Electric Motor Direct Drive for an Electric Loader

Author:

Cai Shaole,Chen Qihuai,Lin Tianliang,Xu Mingkai,Ren Haoling

Abstract

Traditional loaders with engines present the drawbacks of high energy consumption and poor emissions performance. The usage of an electric motor instead of an engine in an electric loader can effectively improve energy efficiency and emissions. The loader is mainly used in the earthwork construction of unstructured roads. Compared to the automobile, during the working process of the loader, the load fluctuates violently, and the vibration is serious. A large torque range during operation, a wide speed range during transfer, and frequently switching gears to ensure power are required by the loader. Therefore, the automatic shift control strategy for an automobile cannot be well applied to the loader directly. In this paper, a novel distributed electric motor-driven loader in which the walking drive system and the hydraulic system is decoupled is studied. The shift rule of the electric loader is also studied. A comprehensive automatic shift control strategy considering power and economy is proposed. Simulations are carried out to verify the feasibility of the proposed control strategy. The results show that under the “V” cycle operation condition of the loader, the shift rule meets the control requirements and the shift effect is obvious and reasonable. In terms of transfer conditions, the proposed control strategy yields ideal power performance and energy savings.

Funder

National Key Research and Development program

National Natural Science Foundation of China

Fujian University industry university research joint innovation project plan

Natural Science Foundation of Fujian Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3