Abstract
Wind and solar energy are examples of clean energy that are widely developed and utilized in order to achieve the goal of carbon neutrality. Higher requirements for the safety and reliability of the power grid are put forward after they are connected to it. In the case of disconnectors, as the power system’s protection equipment, their arc interruption characteristics are closely tied to the safety and reliability of the power system. In addition, a disconnector is required to be able to break the DC arc in the photovoltaic power generation system. Therefore, this paper focuses on the arc evolution characteristics in disconnectors. A magnetohydrodynamics (MHD) model of disconnectors was built. In this model, not only are the coupling of the electromagnetic field and the airflow field considered, but also the characteristics of the external circuit. Therefore, not only can arc evolution characteristics be obtained through this simulation model, but the breaking performance will also be directly obtained. The temperature, pressure and velocity distribution are obtained to analyze the evolution process. The curve of current versus time is calculated to analyze the breaking performance. The evolution characteristics of AC and DC arcs in the disconnector are analyzed by calculation and comparison. This provides theoretical guidance for the optimal design of DC disconnectors through simulation analysis.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Basic Research Program of Natural Science in Shaanxi Province
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献