Friction-Induced Efficiency Losses and Wear Evolution in Hypoid Gears

Author:

Grabovic Eugeniu,Artoni AlessioORCID,Gabiccini MarcoORCID,Guiggiani Massimo,Mattei LorenzaORCID,Di Puccio FrancescaORCID,Ciulli EnricoORCID

Abstract

A correct methodology to evaluate the friction coefficient in lubricated gear pairs is paramount for both the estimation of energy losses and the prediction of wear. In the first part of the paper, a methodology for estimating the coefficient of friction with a semi-empirical formulation is presented, and its results are also employed to analyze mechanical efficiency losses in a hypoid gearset. Hypoid gears have complex tooth surface geometries, and the entraining kinematics of the lubricant is quite involved. The second part of the paper showcases a simulated wear investigation based on the Archard model. The main focus is on the impact of the frequency adopted for updating the worn geometry of the gear and pinion teeth on the fidelity and consistency of the tribological outcomes. These are measured in terms of overall quantity of material removed and characteristics of the loaded contact pattern. More in detail, a sensitivity analysis is presented that compares the total wear of a hypoid gearset after 30 million cycles estimated using different geometry update steps. Contact pressures, which are necessary to perform the aforementioned analyses, are calculated through an accurate, state-of-the-art loaded tooth contact analysis solver.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3