Precision Interaction Force Control of an Underactuated Hydraulic Stance Leg Exoskeleton Considering the Constraint from the Wearer

Author:

Chen ShanORCID,Han Tenghui,Dong Fangfang,Lu Lei,Liu Haijun,Tian Xiaoqing,Han Jiang

Abstract

Hydraulic lower limb exoskeletons are wearable robotic systems, which can help people carry heavy loads. Recently, underactuated exoskeletons with some passive joints have been developed in large numbers for the purpose of decreasing the weight and energy consumption of the system. There are many control algorithms for a multi-joint fully actuated exoskeleton, which cannot be applied for underactuated systems due to the reduction in the number of control inputs. Besides, since the hydraulic actuator is not a desired force output source, there exist high order nonlinearities in hydraulic exoskeletons, which makes the controller design more challenging than motor driven exoskeleton systems. This paper proposed a precision interaction force controller for a 3DOF underactuated hydraulic stance leg exoskeleton. First, the control effect of the wearer is considered and the posture of the exoskeleton back is assumed as a desired trajectory under the control of the wearer. Under this assumption, the system dynamics are changed from a 3DOF underactuated system in joint space to a 2DOF fully actuated system in Cartesian space. Then, a three-level interaction force controller is designed in which the high-level controller conducts human motion intent inference, the middle level controller tracks human motion and the low-level controller achieves output force tracking of hydraulic cylinders. The MIMO adaptive robust control algorithm is applied in the controller design to effectively address the high order nonlinearities of the hydraulic system, multi-joint couplings and various model uncertainties. A gain tuning method is also provided to facilitate the controller gains selection for engineers. Comparative simulations are conducted, which demonstrate that the principal human-machine interaction force components can be minimized and good robust performance to load change and modeling errors can be achieved.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3