Force Tracking Control of Lower Extremity Exoskeleton Based on a New Recurrent Neural Network

Author:

Cao Yuxuan1ORCID,Chen Jie2ORCID,Gao Li2ORCID,Luo Jiqing2,Pu Jinyun1,Song Shengli2

Affiliation:

1. Naval University of Engineering, Wuhan 430033, China

2. Army Engineering University, Nanjing 210016, China

Abstract

The lower extremity exoskeleton can enhance the ability of human limbs, which has been used in many fields. It is difficult to develop a precise force tracking control approach for the exoskeleton because of the dynamics model uncertainty, external disturbances, and unknown human–robot interactive force lied in the system. In this paper, a control method based on a novel recurrent neural network, namely zeroing neural network (ZNN), is proposed to obtain the accurate force tracking. In the framework of ZNN, an adaptive RBF neural network (ARBFNN) is employed to deal with the system uncertainty, and a fixed-time convergence disturbance observer is designed to estimate the external disturbance of the exoskeleton electrohydraulic system. The Lyapunov stability method is utilized to prove the convergence of all the closed-loop signals and the force tracking is guaranteed. The proposed control scheme’s (ARBFNN-FDO-ZNN) force tracking performances are presented and contrasted with the exponential reaching law-based sliding mode controller (ERL-SMC). The proposed scheme is superior to ERL-SMC with fast convergence speed and lower tracking error peak. Finally, experimental tests are conducted to verify the efficacy of the proposed controller for solving accurate force tracking control issues.

Funder

Army Engineering University

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3