zPasteurAIzer: An AI-Enabled Solution for Product Quality Monitoring in Tunnel Pasteurization Machines

Author:

Afolaranmi Samuel Olaiya1ORCID,Drakoulelis Michalis2,Filios Gabriel23,Melchiorre Christian4,Nikoletseas Sotiris35ORCID,Panagiotou Stefanos H.3ORCID,Timpilis Konstantinos3ORCID

Affiliation:

1. FAST-Lab., Faculty of Engineering and Natural Sciences, Tampere University, 33100 Tampere, Finland

2. INDUST Systems, 26222 Patras, Greece

3. Computer Engineering and Informatics Department, University of Patras, 26504 Patras, Greece

4. algoWatt S.p.A, 20123 Milan, Italy

5. Computer Technology Institute and Press “Diophantus”, 26504 Patras, Greece

Abstract

In the food and beverage industry, many foods, beers, and soft drinks need to be pasteurized in order to minimize the effect of micro-organisms on the physical stability, quality, and flavour of the product. Although modern tunnel pasteurizers provide integrated solutions for precise process monitoring and control, a great number of packaging plants continue to operate with legacy pasteurizers that require irregular manual measurements to be performed by shop floor operators in order to monitor the process. In this context, the present paper presents zPasteurAIzer, an end-to-end system that provides real-time quality monitoring for legacy tunnel pasteurization machines and constitutes a low-cost alternative to replacement or the upgrading of installed equipment by leveraging IoT technologies and AI-enabled virtual sensing techniques. We share details on the design and implementation of the system, which is based on a microservice-oriented architecture and includes functionalities such as configuration of the pasteurizer machine, data acquisition, and preprocessing methodology as well as machine learning-based estimation and live dashboard monitoring of the process parameters. Experimental work has been conducted in a real-world use case at a large brewing manufacturing plant in Greece, and the results indicate the value and potential of the proposed system.

Funder

Zero Defect Manufacturing Platform

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Role of Human Factors in Zero Defect Manufacturing: A Study of Training and Workplace Culture;IFIP Advances in Information and Communication Technology;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3