Fuzzy Control of Self-Balancing, Two-Wheel-Driven, SLAM-Based, Unmanned System for Agriculture 4.0 Applications

Author:

Simon János1ORCID

Affiliation:

1. Department of Mechatronics and Automation, Faculty of Engineering, University of Szeged, 6720 Szeged, Hungary

Abstract

This article presents a study on the fuzzy control of self-balancing, two-wheel-driven, simultaneous localization and mapping (SLAM)-based, unmanned systems for Agriculture 4.0 applications. The background highlights the need for precise and efficient navigation of unmanned vehicles in the field of agriculture. The purpose of this study is to develop a fuzzy control system that can enable self-balancing and accurate movement of unmanned vehicles in various terrains. The methods employed in this study include the design of a fuzzy control system and its implementation in a self-balancing, two-wheel-driven, SLAM-based, unmanned system. The main findings of the study show that the proposed fuzzy control system is effective in achieving accurate and stable movement of the unmanned system. The conclusions drawn from the study indicate that the use of fuzzy control systems can enhance the performance of unmanned systems in Agriculture 4.0 applications by enabling precise and efficient navigation. This study has significant implications for the development of autonomous agricultural systems, which can greatly improve efficiency and productivity in the agricultural sector. Fuzzy control was chosen due to its ability to handle uncertainty and imprecision in real-world applications.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3