Kinematic Modeling and Simulation of a New Robot for Wingbox Internal Fastening Application

Author:

Jiang Jiefeng1ORCID,You Jingjing2ORCID,Bi Yunbo3ORCID

Affiliation:

1. School of Engineering, Hangzhou Normal University, Hangzhou 311121, China

2. College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China

3. School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China

Abstract

At present, the fastener installation in a wingbox facing a narrow space must be performed manually. Using a robot is an appropriate solution for automatic assembly. However, the existing robots cannot meet the internal fastening requirements. A new robot with a prismatic joint and four revolute joints (1P4R) was developed to perform the positioning and operation in the wingbox. A compact arm link was designed, and mechanical frame structures were set up. The control system was also set up for the robot’s motion. Then, the forward kinematic model was carried out with the matrix transformation method, and in the analysis the workspace entirely covered the wingbox. The inverse kinematic model was established using the geometric method, and through calculation and simulation, the inverse kinematic equations were verified and refined.

Funder

Zhejiang Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3